CSS, XSLT/FO, TopLeaf — A New Approach to
Rendering XML Documents

Geoff Nolan

Senior Systems Engineer
Turn-Key Systems

A great deal of work has gone into creating such standards as CSS, XSLT and
XSL-FO, which allow human readable XML documents to be rendered on-screen, as
hard copy or PDF. CSS is easy to work with — using GUIs even non-experts can
produce quite complex stylesheets — but lacks key facilities for producing publishable
guality pagination. XSLT/FO has virtually unlimited potential for the manipulation and
display of source material. However the design of the required formatting objects, not
to mention the XSLT transforms which create those objects, is well beyond the
capabilities of non-specialists.

The latest version of Turn-Key's TopLeaf rendering system is an attempt to provide
the facilities of professional quality typesetting, but using a simple intuitive interface.
To achieve this a number of innovative techniques have been developed. This
presentation will compare TopLeaf's mapping strategy with classical stylesheets,
illustrate some of TopLeaf's unique features, and touch upon the role and relevance
of standards in the development of the next generation of rendering tools.

Introduction

XML documents today are typically rendered in one of three ways:
* via CSS stylesheets in browsers and editors;
» with an XSL-FO rendering system, after prior transformation through XSLT;
* using a proprietary system such as FrameMaker, XPP or 3B2.

Since the late 1970s we at Turn-Key Systems have been rendering documents (and in recent years
SGML/XML documents) with our own proprietary system, TopLeaf. Accordingly we watched the
development of XSLT/FO with great interest. Our own stylesheet language (as is typical) was quite
complex, with a steep learning curve, and plenty of Gotchas for the unwary. The prospect of
replacing this with standardised XSLT/FO scripts accordingly had great appeal.

However, when XSL-FO hit the streets we realised that rather than solving the problem of specifying
a rendering strategy, it had simply moved it. Instead of a proprietary stylesheet language, we now
had a standard transformation language (XSLT) targetted at a standard pre-rendered document
format (FO). However the user is now faced with two tasks:

» Designing an FO strategy to yield the desired output.
» Developing XSLT stylesheets to map the source document into the required FO format.

Neither task is trivial for even the simplest documents, while for complex requirements only
specialists would have the detailed knowledge needed to develop the required stylesheets.

What we were aiming for was a system which would enable an ordinary user to develop quite
complex stylesheets, while still allowing the expert the flexibility to meet sophisticated rendering
requirements.

© July 2003 — Turn-Key Systems Page 1

CSS, XSLT/FO, TopLeaf — A New Approach to Rendering XML Documents

At this time we were also the Australian distributor for the SoftQuad (now Corel) XMetaL editor.
One of the features of this software is a CSS design dialog, which enables the user to specify the
appearance of tagged data with considerable flexibility. Of course CSS, primarily used for
screen-based rendering, lacked many of the facilities necessary for publishable quality hard copy or
PDF output.

We already had a rendering engine, plus a set of GUI "Wizards" which would generate simple
stylesheets which could then be fine-tuned by direct editing. We therefore set out to convert these
Wizards into full-fledged Management dialogs, which would completely protect the user from the
underlying stylesheets. Along the way we added a number of facilities which added greater
functionality while actually simplifying the design process for the user.

This presentation will describe some of these innovations in detail, while comparing aspects of
TopLeaf mappings (eg. rule selection, property inheritance) with equivalent mechanisms in CSS and
XSLT/FO.

An Overview of the TopLeaf System

A TopLeaf user specifies document layout via four main dialogs (called Managers) as follows:
» Layout Manager — specifies page size, header/footer areas, columns and various job defaults.
* Map Manager — defines mappings triggered by tags in the source data.

» Notes Manager — specifies layout of footnotes, sidenotes and running heads (eg. continuation
headings).

» HeadFoot Manager — specifies header and/or footer material set independently of the normal
text columns.

The Layout Manager, while interesting in its own right, lies outside the scope of this presentation.
The other three managers are broadly similar in function, as notes and header/footers are treated as a
special type of tag called a system marker. These are handled in just the same way as any ordinary
tag in the source document.

Each manager is responsible for maintaining a set of mappings. A mapping is set of actions triggered
when a given marker (tag) is encountered. Each mapping can include the following classes of
actions:

» declare an element to be block, inline, list-item etc.
 select fonts and effects
* specify table or box styles

* specify paragraph properties such as alignment, margins, vertical spacing, hyphenation,
widow/orphan control etc.

» control paragraph binding, column changes, page breaks, and display of headers/footers
* display graphics

* store or suppress the content of an element, and optionally assign it to a footnote, running
head, table of contents etc.

* generate (for PDF output) a link launch point or destination
* declare explicit pre- or post-content actions.

Page 2 © July 2003 — Turn-Key Systems

Comparison with CSS and XSLT/FO

Tags]Eustam Malkers] Start Tag lEnd Tag] Cantentl Paragraph] Font] Tables] Box] Image] Custam]
$l:|lt:_|cument A Clazsification Paragraph

:E;zﬂdi” Format; Lizt Ibem Type: {* Mormal paragraph

appendixtithe |BI|:u:k j | J " Bind to previous paragraph

blockguote ™ Consolidate space above

bk,

bk title Rules [Dizable merge with presvious

backinto [Start bow [Bind element content

chapter/tithe
commatid Page

[Start margin e [Select page type

[Horizontal line above

command/parameter
date
emphasis

emphasiz[role=bold]
f!lename

b
[

Mew. . | Delete | Templatesz. .. ‘ Ok | Cancel |

As you can see, mappings are analogous to CSS rules and (more distantly) XSLT rules. A simple
mapping just takes the name of the corresponding tag (eg. ti t |). However mappings can be made
more explicit by specifying:

e ancestry —chapter/titl e, exanpl e// para
* attribute value — enph[st yl e="bol d"]

* position within parent—i t eml | ast
or any combination of the above. As you can see the mapping names are reminiscent of XPath/XQL
selectors. Implementing a fuller set of such selectors and using the standard XPath syntax is being
considered for the next major release.

Unlike CSS, but like XSLT, only one mapping is applied to a particular element. If several mappings
match an element then a set of precedence rules is used to determine which is the most explicit.

If no suitable mapping exists, a default system mapping $i npl i ed strips the outermost tags and
processes the content.

Comparison with CSS and XSLT/FO

Due to its mixed heritage, TopLeaf shares some features in common with both of these other
systems.

CSs2 TopL eaf XSLT/FO
Pre-transform No Optional Required
On the fly reorg No Moderate Comprehensive
Headers, Footnotes etc. No Yes Yes
Generated text Minimal Yes Yes
Multiple rule handling Cascade Select Select
Property inheritance Yes Yes Yes

© July 2003 — Turn-Key Systems Page 3

CSS, XSLT/FO, TopLeaf — A New Approach to Rendering XML Documents

CSS-2 TopL eaf XSLT/FO
Real time rendition Yes No No
File Access Sequential Sequential DOM based

At first glance this table suggests that TopLeaf has more in common with XSLT/FO than CSS. In
terms of output options and pagination that is true, but the user interface is far more like that of a
simple CSS GUI because, generally speaking, no pre-transform is required. The mappings are
applied directly to the source document, and any errors or warnings refer back to lines in that
document.

Also like CSS TopLeaf accesses documents sequentially, rather than via the DOM. This has the
advantages of speed and a much smaller memory footprint. In addition, since TopLeaf generates
output directly, the connection between source and output can be more easily designed and
implemented from a sequential viewpoint.

While the direct approach has definite advantages, it does require that the output more or less follows
the structure of the source document. To offset this limitation, TopLeaf has three additional facilities:

» The ability to capture source data for re-use later in the output rendering.
» User defined Custom Markers (see following section).
« If this is still insufficient, a pre-transform can be applied using XSLT or similar tools.

In practice however pre-transforms are almost never needed since XML documents are either created
directly by humans, or constructed by software (eg. database extraction). Human-centric documents
are normally rendered more or less in their original form, while even machine generated documents
(if destined to be rendered in human readable form) tend to be created with that output format in
mind.

TopLeaf Innovations

There are several features which are, to our knowledge, unique to TopLeaf. These allow the user to
leverage the simple tag mapping paradigms to control some of the more sophisticated requirements
of page based (rather than screen based) rendering.

System Markers

We have already mentioned that TopLeaf treats notes, headers etc. as a special form of tag known as
a system marker. This concept also applies to mapping (ie. rule) selection. For example if a section
heading is repeated at the top of each page, then we may want it to set differently than in the original
text. We may wish it to be all caps, and to ignore <enph> tags which would have produced font
changes in the original heading.

To facilitate this TopLeaf generates such repeated headings in the context of one of the system
markers $not e or $headf oot . Thus we can have a standard enph mapping which triggers italic
font, and a separate $headf oot / / enph mapping which does not.

There is also a special $docunent mapping which specifies defaults for the document as a whole,
and reimposes those defaults for material set outside the normal text columns.

Page 4 © July 2003 — Turn-Key Systems

TopLeaf Innovations

Block Merging

Like CSS, TopLeaf mappings fall into categories including Block and Inline. While this is a simple
and elegant model, there are times when the markup does not lend itself to such interpretations.
Consider a table of contents marked up as:

<cont ent s>
<headi ng>I nt r oduct i on</ headi ng><page>1</ page>
<headi ng>Gener al Princi pl es</ headi hg><page>24</ page>

</ cont ent s>

While the cont ent s mapping is clearly a block, what of headi ng and page. If we declare them
as blocks, then they will be set as separate paragraphs. If inline, then the whole TOC will be one
huge paragraph. The problem is that the markup is deficient in that there isno <l i ne>. . </ | i ne>
wrapper around each heading/page pair.

The principle in TopLeaf is that any element which either begins or ends a paragraph is a block.
TopLeaf provides an additional capacity, that any block mapping (in this case headi ng) can
specify a Merge with Following option. This forces the content of the following block to flow on
immediately with no paragraph boundary. In this way the correct output format can be achieved
without having to restructure the input.

Custom Markers

As previously noted, TopLeaf defines its own internal "tags" as system markers. The associated
mappings begin with a $ to distinguish them from regular tag mappings (eg. $docunent,
$runhead2, $headf oot).

However TopLeaf also allows users to define their own private custom mappings. Like system
mappings, these begin with a special distinguishing character % (borrowed from parameter entities
which are likewise user defined).

These mappings are invoked by custom markers, which appear as "elements" in the Pre- and
Post-content material of any other mapping. Like normal tags they can have attributes, and have
start, end, and empty forms. A simple example will illustrate their usefulness.

Say we want a heading to be repeated at the top of each subsequent page. In the mapping for the
heading tag we select the option Assign content to running head level 1. The heading will now repeat
on each new page until switched off or superseded by a new heading.

Now say we want to add — continued to each running head. Also simple. Just open up the
$runheadl system mapping and type

– conti nued

However if we want an italic — continued things become a bit more difficult. We could set the
$runheadl mapping to select italic font, but this would make the whole heading italic, not just the
"continued". What we need is to be able to apply a separate mapping just to part of the string.

This is where custom markers come in. What we need to do is set the $r unheadl1 Post-content to
– <ltal >continued</Ital >

We can then define a new custom mapping % t al as a simple inline which selects italic font.
Problem solved!

© July 2003 — Turn-Key Systems Page 5

CSS, XSLT/FO, TopLeaf — A New Approach to Rendering XML Documents

This is only a trivial example. Custom markers can be used to generate new material or effects in any
form, and can even call other custom markers as part of their own content. They thus serve to
augment the existing document structure to produce almost any desired output. And since they are
mapped just like any ordinary tag, the user does not have to learn any new techniques to take full
advantage of them.

Standards and Stylesheets

One obvious criticism which could be aimed at TopLeaf is: Isn't this just another non-standard
proprietary system?

This is a more subtle question than it at first appears. While TopLeaf is of course a proprietary
product, it does not actually compete directly with either XSLT or XSL-FO (and certainly not with
CSS). You'll notice that I have not mentioned any stylesheet format here. And what actually
constitutes a "stylesheet” in TopLeaf is a question to which | have no definitive answer. The user
only sees the current GUI settings (which lie outside the realms of current standards) and the Pre-
and Post-content material (which are standard well-formed XML fragments).

Indeed it would be quite possible to interpose a TopLeaf-ish GUI on top of a standard XSLT/FO
system. And the details of the GUI are open for the world to see, there are no hidden proprietary
secrets up our sleeves.

TopLeaf is in fact addressing a different, higher level problem space than current standards. Rather
than specifying how to transform an XML document, or how to produce a definitive XML rendering
model, it addresses the question:

How can we make the full potential of XML document rendering available to the non-specialist
user without sacrificing features or quality.

This sort of human-centric design is what distinguished (say) Lotus 1-2-3 from earlier much more
specialised accounting aids. Does this mean that the latest TopLeaf is the forerunner of a new
generation of rendering tools? I'd like to think so, but only time will tell.

Page 6 © July 2003 — Turn-Key Systems

	Introduction
	An Overview of the TopLeaf System
	Comparison with CSS and XSLT/FO
	TopLeaf Innovations
	System Markers
	Block Merging
	Custom Markers

	Standards and Stylesheets

