
Adopting XML — A Business Perspective
Geoff Nolan

Senior Systems Engineer
Turn-Key Systems
Sydney NSW, Australia
gjn@turnkey.com.au
www.turnkey.com.au

Turn-Key Systems is one of Australia's oldest software companies, established in
1971. It has long specialized in professional publishing software and content based
markup. In 1997 the company decided to convert its operations to XML. The
company has particular expertise in data conversion and DTD design, it is the
Australian distributor for XMetaL, and has developed TopLeaf (an XML looseleaf
rendering system) and X-Ice (an open source MS Word to XML converter).

Geoff Nolan is an honours graduate in computer science who joined Turn-Key in
1984. He has worked on the automated rendering of Yellow Pages directories,
integrated legal publishing systems, and point-in-time legislation delivery. He
became an early XML convert in 1997, and specializes in markup design, data
conversion, and XML storage and maintenance strategies. He has co-authored
several patents for XML enabling technologies and presented XML technical
papers in Australia, the US and Europe.

Introduction
Making the decision to adopt XML, or having it thrust upon you, is only the first step in a major
transformation in how your organization relates to its data. You should be aware at the start that there
will be costs and difficulties associated with the switchover. However, if you are properly prepared, the
costs can be minimized and the benefits substantial.

This tutorial addresses the issues you are likely to confront in converting to, and working with, XML
data. We will begin with the conversion process itself, the choice of which data lends itself to
conversion, and the equally important selection and preparation of staff to facilitate the change.

Next we will cover the tools of the trade — software which will help you convert and maintain your
data. Finally we discuss the uses to which your new data will be put, and how to structure your data to
support its existing and potential functions.

Making the Switch
For some organizations the decision to adopt XML is a virtual no-brainer. For others the decision will
come only after the most careful evaluation of potential benefits and pitfalls. Only one thing is certain:
the switchover from traditional data maintenance to structured documents will be the most painful part of
the exercise. However a properly planned and executed implementation will involve considerably less
pain and less cost, while helping to ensure that desired outcomes will be fully realized in the shortest
possible time.
© Turn-Key Systems Pty Ltd November 20011



Adopting XML — A Business Perspective

Migrating New Material
While some XML enthusiasts will say "Convert Everything!", this is manifestly bad advice for most
organizations. Our business, for example, still uses Microsoft Office products very frequently. In fact we
have even reverted to using proprietary formats for some files which were previously in XML!
The selection of which data to migrate to an XML production mode and which to leave alone is often the
difference between a successful and profitable implementation, and a costly failure.
Put simply, you should consider migrating documents which:

• have more than one potential end-use
• can be used in the creation of other documents
• are subject to search and retrieval beyond simple word searches
• have a potentially long life-span

Let's consider the above items one by one. Because XML tends to emphasize content over format, it
lends itself very well to documents which may need to appear in different forms. This tutorial is itself
coded in XML for that very reason. There are at least three forms in which this document will appear:

• A US Letter sized PDF.
• An A4 sized PDF for distribution outside the USA.
• A set of HTML pages for the Turn-Key website.

Now you might say that Microsoft Word (WordPerfect etc.) is perfectly capable of producing output in
these three formats. This is certainly true for A4 and Letter documents, and partially true for HTML.
And indeed many businesses use Word in exactly this fashion.
However, the XML solution is both easier to adapt to a production environment and slightly more
efficient. When a large number of documents are involved, this represents a substantial saving in
processing costs. In addition, the efficiency and effectiveness of HTML translation is far higher from
XML than from any proprietary format (see Tools of the Trade below).
The advantages of XML are much more obvious when it comes to re-using all or part of a document.
Such re-use may range from automatically generating a subject index for your data, through to lifting
whole sections and pasting them into new documents. Experience has shown us time and again that,
irrespective of special styles and templates that may be used, it is virtually impossible to restrict the
"creativity" of authors using Word. And even if you succeed, all you have done is produce an inefficient
and non-standard XML equivalent!
Of course once you have an XML document, you immediately have access to a wide and growing range
of applications which can access and process your data. Already there are document management
systems which support sophisticated search and retrieval functions, and converters such as XSLT which
can reshape your data to meet a range of requirements.
And finally a much overlooked point. XML is a format which not only allows transmission of data
between computer systems, but also transmission of data through time. For example, an SGML
document from the mid 1980s would still be relatively easy to process today. The same could not be said
for a WordStar document of the same era. Proprietary formats come and go, and even Word document
formats have changed substantially over the years. But the information content of a XML document
using basic tagging and a standard ASCII or Unicode encoding will retain its value, even if the
associated processing applications are no longer in use.
However, even with its advantages, XML should not be the automatic choice for every type of
document. Proprietary systems generally have advantages in three areas:
© Turn-Key Systems Pty Ltd November 20012



Adopting XML — A Business Perspective

• cost of preparation
• flexibility
• familiarity

There is often a cost overhead in the preparation of a structured document, particularly if that document
is small and free format. Examples are memos, flyers, brochures and other throw away items. If style is
important but the content will never be used again, it is almost always more efficient to use whatever
application is most expedient.

Even some larger documents may be best left with current production methods. XML is most effective
for classes of documents with a well defined common structure. Some quite substantial documents bear
little structural similarity to other documents within the organization, or contain numerous internal
inconsistencies. In such cases the cost of analyzing and formally specifying the structure (e.g. in a DTD)
may well exceed the benefits gained, especially if the authors/editors find the structured environment too
restricting.

Finally, your staff may be perfectly happy with existing practices and software, and strenuously resist
any attempt to force them into a new mold. The cost of such resistance can be substantial, and may well
outweigh any potential benefits from the change. In this case the organization needs to carefully assess
whether a migration to XML will actually be of any long term benefit.

Note that this section refers only to the migration of document production to XML. We now turn to the
more difficult question of what, if anything, to do about existing documents.

Archived Data
When thinking about archived data, the problem is less straightforward. Unless the data is very tightly
structured, there will be a substantial conversion cost. So the fact that new material for a particular
document class is in XML is no guarantee that upgrading the legacy material will be a viable
proposition. In general you should aim to convert as little existing data as possible, consistent with your
business and production requirements.

You should of course convert any data which forms an integrated whole with on-going work. For
example, if you are publishing new volumes or supplements to an existing work then the total production
cost of the work will generally be lower if it is all converted to a common format. The same applies to
material which is likely to be revised or otherwise accessed for some time to come. Remember that
conversion to XML is the cheapest and most effective means of storing data over long periods of time.

Teamwork
The decision to adopt XML must be actively supported by all affected personnel, and those personnel
must themselves be supported by the business as a whole. All too often we see management take the
decision to adopt, and then leave implementation to individual departments. This invariably leads to a
patchy and inefficient setup, especially if no staff or budgeting allowances are provided for, and existing
cost and production deadlines are expected to be met.

Management must always be aware that adopting XML is a long term corporate strategy, and one which
will require a substantial investment of time, money and resources. Any plan requiring cost recovery
within 12 months is doomed at the outset, as the initial cost of a good implementation is almost all up
front. The benefits, though substantial, will not become apparent until the conversions are complete and
the new practices and procedures in place. Unlike, say, investment in new computer systems which
depreciate to almost nothing over a few years, the benefits of XML adoption steadily increase as time
goes by.
© Turn-Key Systems Pty Ltd November 20013



Adopting XML — A Business Perspective

Most successful implementations have a champion. This is a senior manager or technical officer who has
a commitment to oversee and coordinate the adoption process. A successful champion must be able to:

• prepare a plan and a schedule for XML adoption, including a clear set of goals and sign-off
conditions

• ensure that individual departments play their part in the implementation
• extract from senior management relaxation of budgetary and time constraints which are

incompatible with the change
• organize additional personnel, training, documentation and other facilities required by affected

departments
• promote an atmosphere of acceptance within the organization, and address pockets of doubt or

apprehension

It must be stressed that XML adoption is a different order of change from, say, upgrading to a new
version of Windows. It is likely that all levels of staff will be affected to some degree in terms of
workflow and procedures. Anyone interacting with the data will have to change not only their software
(e.g. XMetaL instead of MS Word) but also the way they think about their documents.

Working with XML is no harder than creating documents using traditional tools. After all, the aim of the
exercise is generally to increase the efficiency of production of the documents in question. The major
difference, and one which causes far more trouble than simply learning a new authoring tool, is the
perceived lack of flexibility (or even creativity) in the production of structured documents. MS Word,
like most traditional document authoring tools, allows almost unlimited flexibility in the styles and
formats that can be applied. Even the strictest style guides and templates still leave room for the canny
operator to "work around" problems which may crop up from time to time. But it is this very flexibility
which compromises the true informational content of the data, and which makes automatic Word to
XML conversion such a high risk and/or uncertain affair.

XML tools on the other hand enforce absolute adherence to the prescribed document structure. This is
done not by ringing bells or posting nasty error messages, but rather by simply not providing access to
any action which would break the rules. Thus, if an element cannot be inserted at a particular point in a
document, then the drop down insertion menu simply does not contain that element. If text is not
allowed, then pressing the alphabetical keys has no effect. And so it goes — the available tools are
constantly modified so that only actions valid at the current location are possible.

Authors and editors new to this environment find it cumbersome and restrictive. It is only later that they
realise that they no longer have to reformat (say) an extract from a monthly discussion paper in order to
include it in a managerial summary. As the impact of these benefits starts to sink in (and provided that
there are benefits) we often see a major turnaround in attitude. Not having to worry about format comes
to be seen as a liberating experience which entirely eliminates many useless and tedious tasks. But both
the staff and the organization will benefit if the advantages are explained in advance, and the staff
properly trained both in the new procedures and in the problems they are likely to encounter during the
adoption process.

Workflow
Before you convert your data you need to consider how it will be managed under an XML regime. The
purists say that all document authoring and editing must take place in an XML environment, and in an
ideal world we would agree. However, there are many circumstances in which a different workflow
model must be used. The most common is where an organization has little or no control over the raw
data it must use.
© Turn-Key Systems Pty Ltd November 20014



Adopting XML — A Business Perspective

Author, Author!
Whether to author documents in XML or convert them from some other format is a question that almost
every XML adopter must face sooner or later. When the documents arise from an external source (such
as an independent author or government department) the question answers itself. And if a company
already has a smoothly running document production system, it may wish to leave well enough alone,
and restrict XML processing to downstream editors.

Nevertheless there are substantial benefits to a full XML environment. Perhaps the greatest is doing
away with the need for document conversion.

The phrase "We can automatically convert our Word documents to XML" is often heard, but we have
yet to see a single instance of it working in practice. By applying stricter and stricter style rules, or
tighter and tighter templates, it is possible to approach the goal of fully automatic conversion. But by the
time you get close enough to make this a working proposition, you have reduced Word to an unwieldy
and feature-poor replica of a proper XML authoring tool you could have used from the start!

Authoring in XML is not just a matter of using the right software, it's also a state of mind. A traditional
mindset regards the strictures of using XML as an unnecessary complication and an obstacle to getting
the job done. An XML author regards those same strictures as an essential part of getting the job done
right. A document which proofs beautifully, but which causes major headaches when reprocessed, is of
little net benefit to an organization. In fact the effort of cleaning up the mess, and then having to
reconcile the changes with versions already released, usually far exceeds what would have been required
to do the job properly in the first place.

So, while there are many valid reasons not to author in XML, remember that there will be a cost
involved.

Conversion Strategies
The simple rule here is: If you have to convert at all, then only convert once.

Systems which purport to convert data back and forth have a superficial appeal — "Have all the benefits
of XML in-house while still allowing your authors and editors to use their preferred document
processors!". The fact remains however that the informational content of XML is generally higher than a
version of the same document in any other format. Thus each conversion from XML to (for example)
DOC involves a net loss of information. It is possible to preserve some of this information in the form of
styles, comments, and similar workarounds. But the non-XML application cannot in general ensure that
this information is preserved during an editing session.

So as a general rule, once your data has been converted to XML it should stay in that form.

But this naturally raises the question of what to do when your authors/editors have to correct or expand
the original document. Though it seems counter-intuitive, our experience has been that the most
successful approach is to send a non-XML author a printed copy of the document so that corrections can
be marked by hand. If substantial new material is required, then the author should create mini-documents
to be inserted into the main work. In either case, the corrections to the XML master are made in-house
by XML editors.

While this process seems inefficient, the alternative is generally to convert the XML back to its original
format, then reconvert the amended document back to XML. This automatically implies that the working
master of a document is sometimes in the repository, and sometimes out with an author in an
uncontrolled format. This in turn can lead to subtle errors which manifest in spectacular (and costly!)
fashion further down the track.
© Turn-Key Systems Pty Ltd November 20015



Adopting XML — A Business Perspective

How do we actually achieve the conversion? You can write your own script, use a pre-existing tool (of
which there are many), or use the other application's "Save as XML" option (and then try to make some
sense of the result). If you are converting MS Word files, then Turn-Key provides an excellent solution
which is outlined in the following section.

Always remember though, the best conversion is no conversion at all. So if it's at all feasible, you can
save yourself a great deal of time and cost by training your authors to use XML from the start!

X-Ice

The X-Ice (XML Interactive Conversion Environment) program is available from the Turn-Key website,
and it's free! The one catch is that (for the current version at least) you need a running XMetaL to build
your output file — an evaluation version will do. X-Ice provides a bridge between the MS Word API
and the XMetal API, extracting a paragraph at a time and sending XMetaL the data it needs to build the
XML equivalent.

You can specify your own DTD, and your own conversion rules. The conversion is interactive and
pauses when the system can't find a rule to apply, or the result would produce invalid XML. You then
have four options:

• modify the Word document to match the rules;
• modify the XML document to ensure a valid result;
• modify the rules to handle the new situation;
• tell the system to insert the bad data as a comment and continue.

The rules themselves are entered via a GUI which handles the basics. More complex operations (such as
tagging based on textual content) are handled by adding snippets of Perl code to the basic rule. The
system is simple to operate (unless you want to do something really arcane) and has been battle tested on
some large and complex conversions. Best of all, as the rules are modified the system requires less and
less human intervention.

How Many XML's

It's possible to get the impression that you must explicitly mark up your document to handle any
forseeable application. This is not entirely correct — you should mark up to ultimately support any
forseeable application. The document that you author and edit is a master document. In other words it is
the one from which all other variants can be derived. The tagging of a master document should directly
support only two functions:

• it must contain sufficient tagging to reliably imply any forseeable variant;
• subject to the above it must be amenable to understanding and modification by human editors.

For example, this tutorial is marked according to the XML 2001 DTD. It contains very few tags in
common with HTML, and yet we can be entirely confident that a valid and meaningful HTML variant
can be produced. The HTML will be entirely different from the original in a number of ways: the
markup will be entirely different; it will be spread over several files; it will include a hyperlinked table
of contents.

The important point is that we don't have to worry about any of this when keying the original document,
since we first ascertained that the markup in question did reliably imply all the features we wanted in our
HTML.
© Turn-Key Systems Pty Ltd November 20016



Adopting XML — A Business Perspective

The same applies if we want to map our document into (say) a relational database table. Take a phone
number which needs to be mapped into the relational fields country_code, area_code, local_number. We
could mark the number:

<phone-number><country-code>1</country-code>
<area-code>412</area-code>
<local-number>555-4821</local-number></phone-number>

or we could use the simple:

<phone-number>+1-412-555-4821</phone-number>

Which is correct? There is no simple answer. The first form looks very explicit, but how would it handle
phone numbers in small countries with no area codes? The second is straightforward, but could a missed
key by an operator render the whole number unreadable? For that matter what would a missed key do to
the first version?

The format of your master document must fit in with your overall workflow, editorial guidelines, and
other software. Provided that this is achieved, the precise level and style of markup is really quite
secondary.

You may find that once you've accumulated a body of XML documents, new uses for the data will
become apparent. An example might be auto-generation of tables and indexes. Provided that you have
marked the content that is of interest, you will be able to introduce these new applications with little or
no change to the markup of existing documents.

Tools of the Trade
The question of which tools to use with your XML documents is one of the most difficult to address.
Ever since its inception, XML has spawned a wide and ever increasing set of associated standards, new
methodologies, and supporting software. And since new and upgraded tools are constantly appearing, it
is impossible to make firm recommendations in a static document such as this tutorial. So we will
mention only a few of the most basic tools of the trade, and give some advice on what you should be
looking for in a useful application.

Apart from the home sites of the individual products, there are a number of web pages which list
available XML applications. One of the best is xmlsoftware.com which presents lists of tools by
category. Another good place to begin is google.com — just type in the name of the application you're
looking for, and you'll get back a list of sites, most relevant first.

XML Editors
For most organizations the first item on the shopping list will be the basic author/editing system. We
have had experience with three systems: ArborText Epic (formerly Adept), SoftQuad's XMetaL, and
Altova's XML Spy. These are arranged in descending order of cost (and time since initial release). All
three will do a good job on the desktop, and the choice will probably boil down to details of price,
programming interface, and handling of associated standards such as the DOM, Schemas, XSLT, and
stylesheets (CSS and FO).

We would not normally recommend editing tools based on Word, WordPerfect etc, as both performance
and standards support are necessarily not as good as tools specifically designed for XML. However, if
your main concern is having a unified tool on every desktop, then these solutions might be worth
considering.
© Turn-Key Systems Pty Ltd November 20017



Adopting XML — A Business Perspective

Repository/Database
Storage of your XML documents is a more complex matter. There are several competing technologies
available at the moment, and many companies (including Turn-Key!) are working on experimental
applications which attempt to address the shortcomings of the existing offerings. The currently available
strategies fall into four general groups:

• Simple file hierarchies — the cheapest and simplest option is to set up a directory hierarchy and
access your documents as individual files. Judicious choice of structure and naming conventions,
use of entity inclusions etc. can make this solution surprisingly effective. The major drawback is
functionality. Versioning has to be done manually, and search and retrieval facilities are crude.

• Document repositories — many document repository systems (such as Documentum) offer some
XML specific support. These systems offer the traditional services of versioning, tracking,
workflow etc, but support for XML standards such as the DOM may be incomplete.

• RDBMS add-ons — major players such as Microsoft and Oracle are beginning to add XML
functionality to their relational database products. While the concept is new, the underlying
database engines are stable mature designs with performance and scalability to burn. These
systems work well, but they are expensive and often support XML standards in unorthodox
fashion. The so-called object-relational mapping techniques used to map the hierarchical XML
content into flat table records have some major limitations, but these should not be apparent to
the casual user.

• "Native" XML Object Stores — applications such as Excelon and Tamino have eschewed
traditional relational models in favor of an XML object technology which supports the XML
object model (DOM) and XML Query syntax directly. They tend to be easier to use and more
fully featured than other systems. Their principle weakness is in sheer brute strength handling of
large quantities of data. This is an emerging technology, and each release sees a substantial
increase in performance, but if lightning response times are required then the RDBMS systems
still have the edge.

There are a few other innovative repository tools out there, but examining them is beyond the scope of
this document. If you are (say) looking for super fast query response or want to handle huge documents
efficiently, then you should hit the search engines and newsgroups. New solutions come on line every
week or two.

Rendering Systems
Once you have your data neatly marked up you will normally want to render it in some visible form.
This section deals with tools which produce quality typeset renditions for hard copy, PDF etc.
Conversion to HTML for web page creation will be covered in the following section.

There are a number of systems based on traditional composition engines. These include FrameMaker,
XyVision, Ventura and InterLeaf. Turn-Key's own TopLeaf (on which this document was set) also falls
into this category. As yet most of these systems use their own internal control files to perform the
translation from XML to print, though there is an increasing tendency to offer support for XSLT and/or
CSS.

Selection will be based on a number of factors such as price, features, expertise within the organization,
special features (e.g. TopLeaf is particularly strong in looseleaf production). One thing to avoid are
systems which convert the XML file into an internal markup which is then subject to "final correction".
If this feature is offered, don't use it! Corrections applied to anything other than the master XML file run
directly counter to best practice. At best they are recurrent waste work, at worst they can lead to serious
errors and anomalies.
© Turn-Key Systems Pty Ltd November 20018



Adopting XML — A Business Perspective

A new class of rendering engines is worthy of mention. RenderX and FOP are specifically designed to
render XSL:FO (flow objects) as printable pages. RenderX is a commercial product, while FOP is an
open source initiative of the Apache project. However, these systems come with a caveat. XSL is a very
new standard, having been finalized in October 2001. Support for flow objects in both systems is
incomplete, though they should work well for "normal" print jobs. More significantly, you need an
XSL:FO file to drive them. Flow objects are not intended to be edited directly, but are the result of a
transform of your original XML data. As yet we are not aware of any XSL:FO creation system which
offers features comparable to a traditional composition engine. But it's only a matter of time.

HTML and Beyond
XML data has the potential to be mapped into any number of forms. An HTML equivalent for display on
the Web is a very common requirement, though other formats (e.g. RDBMS record files and even
differently marked XML) are both possible and often useful.

The mapping between these forms is normally achieved in one of two ways. Firstly applications such as
OmniMark, and high level languages such as Perl can be used. While these are programming solutions,
the process can be relatively painless. Perl for example has a number of freely available XML modules
which handle many of the basic functions. A complete DOM interface is available if needed.

However, XML provides its own means for reformatting XML documents. XSLT provides a set of
actions which can be expressed in the form of an XSLT stylesheet. Such a stylesheet is itself an XML
document, and systems have been designed to accept a stylesheet and source document, and output the
result of the transformation (which may or may not itself be an XML document). In particular such a
system can be used to convert a source document to a set of flow objects which can in turn be rendered
as print (see previous section). In current usage however, the most common target is HTML (or
XHTML, the XML compliant equivalent).

Whatever the desired end product, an XSLT transform requires two utilities:

• an XSLT editor to help create the stylesheet; and
• an XSLT engine to perform the transformation.

The number of tools of each type is staggering. They range from full featured GUIs to program libraries
for Java, Perl etc. The xmlsoftware.com website is a good starting point for selecting a tool to meet your
needs.

Markup Design
The mistake people tend to make in this area is to concentrate on DTD and/or Schema development. The
starting point should always be the marked up data. Start by getting the markup into the form you need,
then develop the DTD/Schema to match. This section contains a few tips which address the most
frequently encountered issues in markup design.

How Much Markup
The simple answer is: Mark up as much as you need and no more.

But what does this mean in practice? Essentially markup is an investment in your data which involves an
initial outlay, but can yield substantial benefits. Like any other investment there is no point outlaying in
areas which yield no returns. Every tag and attribute in your data represents time and money in its
creation and continued maintenance. A useful tag will pay its way many times over, but over-tagging is
worse than pointless.
© Turn-Key Systems Pty Ltd November 20019



Adopting XML — A Business Perspective

Exactly what constitutes useful markup varies according to how the data is to be used. Thus a sentence
in a grammar text might be marked:

<para><verb mood="imperative">Experience</verb>
<article>the</article> <noun>luxury</noun>
<preposition type="possessive">of</preposition>
<compound-adjective><adjective>red</adjective>
<noun>leather</noun></compound-adjective> <noun>upholstery</noun><punc>!</punc></para>

whereas the same sentence in a car company sales brochure appears as:

<para>Experience the luxury of
<accessory part-code="UH07" color-name="Carmine Sunrise">red
leather upholstery</accessory>!</para>

So you should mark up everything that is, or may be, useful for your own purposes

Separate Structure from Content
You will find life far easier if you use one set of elements to convey the structure of your document and
another set to encapsulate the content. To check your markup, divide the tags into three classes as
follows:

• Any element which introduces element content (i.e. can never contain text directly) is a structural
element. This includes empty (singleton) tags.

• Any non-structural element which can appear directly within a structural element is a container.
• The remaining elements are delimiters.

Structural elements provide a skeleton for the document, while containers introduce the content.
Delimiters are typically used to distinguish some fragment of the content. For example, in this tutorial
document, structural elements include: gcapaper, author, section, randlist; containers include: title,
para, code.block; and delimiters: b, i, keyword, acronym, code.
You will have successfully separated structure and content if there are no nested containers. For
example a para can directly contain any number of delimiters (to indicate keywords or italicized phrases
within the text) or sub-structures (such as lists). It would however not be permissible to place another
para or even a code.block directly inside a para. Another way to express this rule is: a container may
never appear in any position where text might appear (i.e. in mixed context).
Note that it is perfectly OK to indirectly nest containers, provided that at least one structural tag
separates them in the hierarchy. Thus, while para/para and even para/keyword/para break our separation
rule, para/randlist/li/para does not.
There are certain circumstances in which this rule may be weakened. The classical example is the table
cell (entry, td, etc). If we think of the cell as a structural element, then we should never include text
directly within it. On the other hand, if it is a container, then we could never have a cell consisting of
several paras, since that implies nested containers. In fact a cell is definitely a structural element, but one
which carries an implied container if and only if it contains text directly. Thus:

• <cell><para>Hello world!</para></cell> is acceptable, since this is simply a container within a
structural element;

• <cell>Hello world!</cell> is also OK, since a cell which contains text directly implies an
(anonymous) container; but

© Turn-Key Systems Pty Ltd November 200110



Adopting XML — A Business Perspective

• <cell>Hello <para>world!</para></cell> breaks our separation rule, as here the para is contained
directly within the implied cell container.

In other words, a cell may contain either text or sub-containers, but not both!
While the separation rule sometimes forces us to introduce a little additional tagging, it should always be
followed wherever data may be re-used, as the ability to clearly differentiate between structure and
content allows you to keep better control of your document, and simplifies both markup design and a
number of downstream processing tasks.

Attributes vs Elements
One question we are frequently asked is whether to include an item of data as an attribute, or within its
own sub-element. Consider a book chapter, which has a main title plus a short title which is used in
running heads. Do we mark this as:

<chapter><title>Innovative Procedures and their Effect
on Management Decisions</title>
<short-title>Innovative Procedures</short-title>

or
<chapter short-title="Innovative Procedures">
<title>Innovative Procedures and their Effect on Management
Decisions</title>

We have a rule to decide issues such as these. In short, data may only be expressed as an attribute if:
• it has a fixed format; and
• it does not form part of the substantive text of a document.

Fixed format data includes:
• selections from a known set of options (e.g. alignment options, US states)
• text whose format is known in advance (e.g. zip codes, URIs)
• numerical data (e.g. "-31", "12pt", "33.3%")

In particular, fixed format data must never contain XML tagging, and will not normally require any use
of character entities.
So going back to our short title example, we can now apply the rules. Clearly the data is not fixed
format. It should also probably be regarded as substantive text. Thus on both counts data of this type
must be expressed as a sub-element, and so the first coding is the correct one.
Why is it so important to make this distinction? There is no reason in principle why the short title could
not be something like "Implications of Roe v Wade", and the coding:

<chapter short-title="Implications of <i>Roe v Wade</i>">

is not legal XML, since attributes may not contain internal tagging. And while it costs very little to use
the correct markup in the first place, it is a difficult and expensive undertaking to address such problems
once a large body of data has been accumulated.

A Capital Idea!
It's remarkable how often even XML professionals forget the simple maxim: Never key text in all upper
case.
© Turn-Key Systems Pty Ltd November 200111



Adopting XML — A Business Perspective

Irrespective of how text is displayed, it should always be keyed in mixed case. Headings may take initial
capitals where appropriate. But the only material which should be keyed in all caps is text that can never
appear any other way (e.g. "NYPD", "IBM", "Them vs Us in the US").
The simple fact is that translating mixed case into all upper is a trivial exercise, while the reverse is not
the case. For example, is "VANDERMEER" actually "Vandermeer", "vanDermeer", "VanderMeer" or
some other variant. By keying in all caps we have actually lost some of the informational content of our
data. Sooner or later we may want to re-use this data, say in generating a table of contents where case
will be significant.
Another trap for the unwary are small caps. These little guys look great when used with discretion, but
all too often we see markup such as:

<song>O<s>LD</s> M<s>AC</s>D<s>ONALD</s></song>

when all we really needed was:
<song>Old MacDonald</song>

Yet another example of confusing style with content. I'll leave it as an exercise for the reader to work
out which variant is more often mis-typed by the editors!

Conclusion
Naturally in a document of this size we can only cover a fraction of the issues you may encounter.
Nevertheless we do tend to see the same problems cropping up again and again. So study our advice on
migration, workflow and markup, adapting it to your own needs where necessary. It should help you
avoid the worst pitfalls of the XML adoption process, while ensuring that your data will continue to
serve you well both now and in the future.

© Turn-Key Systems Pty Ltd November 200112


